ENERGY DISSIPATION IN UNSTEADY
INCOMPRESSIBLE FLUID FLOWS

V. S. Sizonov

We examine energy dissipation in the case of unsteady laminar flows of an incompressible viscous
fluid. It is shown that depending on the motion conditions from 50 to 100% of the energy expended on tan-
gential displacement of a solid surface in the fluid is dissipated. We also examine the question of evaluat-
ing the velocity fields found by solution of the approximate equations of motion of the fluid.

The following proposition holds: If solid boundaries whose displacement velocity thereafter remains
constant are suddenly brought into tangential motion half of all the work expended is used to entrain into
motion the viscous fluid enclosed within the moving boundaries in the absence of inertial accelerations;
the second half of the work is dissipated into heat, and this ratio is independent of both the physical proper-
ties of the fluid and the boundary displacement velocity.

On the basis of the Helmholtz~Rayleigh comparison theorem we can state that for the same boundary
motions but with the presence of inertial accelerations in the fluid the dissipated energy fraction exceeds
one half,

We shall restrict ourselves to examination of only the most interesting particular cases.

1. For the case of motion of an infinite pipe along its axis, arising at the time t = 0 with the constant
velocity U, we can obtain the following expression for the velocity of the fluid particles located inside
the pipe:
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Here g = pipe radius, r = variable radius, J; = Bessel function of the first kind of zero order, oy, =
roots of the equation Jy(a) = 0, ¥ = kinematic viscosity, t = time.

The specific (per unit pipe length) power dissipated in the fluid in the pipe motion is
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and the specific power of the external forces expended on pipe motion is
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The ratio of the specific energy dissipated in the fluid by time t from initiation of the motion
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to the specific work of the external forces during this same time
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Thus, half the work expended is dissipated into heat, half is expended on entraining the fluid into
motion.

2. For the case of rotation of an infinitely long cylinder of radius @ about its axis, set into rotation
at the time t = 0 with the constant angular velocity &, we can obtain the following expression for the cir-
cumferential velocity of the fluid [1]
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Here Jy is the Bessel function of the first kind of first order, ayy are the roots of the equation J4 () =0.
The rate of energy dissipation per unit fluid volume is
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The power dissipated in the fluid (per unit cylinder length) is
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And in this case the ratio of the specific energy dissipated
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to the specific work of the external forces
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On the basis of the Helmholtz theorem this ratio for the cylinder of finite length, and also for the
ellipsoid, sphere, and so on, will exceed 1/2, and the greater the boundary velocity the greater is the dis~
sipated energy fraction, other conditions being the same.

3. The characteristic feature of the problem is the condition that the fluid be bounded by moving
surfaces.

If a solid surface performs tangential motion in an infinite fluid, then the dissipated energy fraction
increases. Thus, for example, for the case of tangential motion in an infinitely deep liquid of an infinite
plane which begins motion with the constant velocity U at the time t = 0 we can obtain the following ex-
pression for the fluid particle velocity [1]:

0o
_ _ 2 — o) sin Y da
u—-U(i - § exp (—a )sxn_ﬁ.._.a )

where y is the ordinate, measured from the moving plane.
The power dissipated per unit area of the moving plane is

D= pU2 'V/Znt

the specific power of the external forces expended on motion of the plane is

]\/=pU2 1 v/nt
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The ratio of the specific (per unit area) energy dissipated in the fluid
Ay =00 Vivi[m
to the work expended
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equals in this case 1/Y2 and is independent of time.

Thus, in the case of tangential motion of a plane in an infinite fluid less than 30% of the work of the
external forces is expended on entraining the fluid into motion and more than 70% of the work expended is
dissipated.

At the same time, for the case of parallel motion of two planes at the distance h from one another
and beginning motion at the time t = 0 in the same direction with the constant velocity U the ratio of the
energy dissipated to the work expended equals 1/2, since in this case the fluid is enclosed between the
moving surfaces.

In fact, it can be shown that the fluid velocity in this case is defined by the expression
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and the external force power expended on motion of the plates is
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and the power dissipated in the fluid is
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The ratio of the specific energy dissipated in the fluid during the time t
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equals 1/2 as t —~co,

We note that the specific (per unit surface area) work of the external forces expended on tangential
displacement of the surfaces bounding the fluid is finite as t =, while the specific work of the tangential
displacement of any surfaces in an infinite fluid increases without limit as t — co,

For tangential motions of solid surfaces, accompanied by energy dissipation in the steady-state re-
gimes, for example for the cases of rotation of a cylinder or a plane in an infinite fluid, motion of a plane
parallel to some stationary plane, motion of a pipe in a pipe, and so on, the relative fraction of energy dis-
sipated during the transient process time (i.e., during the period of motion acceleration) equals unity., In

this case the transient process is accompanied by energy dissipation which exceeds infinitely the energy
expended on entraining the fluid into motion.

In conclusion we note that the solutions of such problems as the Slezkin problem {1] on submergence
of a flat plate into a viscous fluid, the Targ problem [2] on immersion of a pipe, solutions of various prob-
lems onboundary layer development, and so on, obtained on the basis of the solution of the approximate
equations of motion, yield energetically impossible velocity fields in the fluid, since the energy dissipation
in such fields is infinite, The reason for this is the unsatisfactory form of the velocity profile at the lead-
ing edge of the solid walls, obtained in adopting the boundary conditions of unperturbed fluid flow at the
leading edge of the wall, In this case the surface of maximal velocity gradient is convex in relation to the
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surface being immersed, being at the same time infinite at the leading edge. For example, in the case of
immersion of a pipe the power dissipated in the fluid volume inside the immersed part of the pipe of length
h is
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although the power expended on immersion of the tube is finite
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