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We examine energy dissipation in the case  of unsteady laminar flows of an incompress ible  viscous 
fluid. It is shown that depending on the motion conditions f rom 50 to 100% of the energy expended on tan- 
gential displacement  of a solid surface  in the fluid is dissipated. We also examine the question of evaluat- 
ing the velocity fields found by solution of the approximate equations of motion of the fluid. 

The following proposit ion holds: If solid boundaries ~hose  displacement velocity thereaf ter  remains  
constant a re  suddenly brought  into tangential  motion half of all the work expended is used to entrain into 
motion the viscous fluid enclosed within the moving boundaries in the absence of inert ial  accelerat ions;  
the second half of the work is dissipated into heat, and this ratio is independent of both the physical p roper -  
t ies of the fluid and the boundary displacement  velocity.  

On the basis  of the Helmholtz-Rayleigh compar i son  theorem we can state that for the same boundary 
motions but with the presence  of inert ial  accelera t ions  in the fluid the dissipated energy fract ion exceeds 
one half. 

We shall r e s t r i c t  ourse lves  to examination of only the most  interesting par t icular  cases .  

1. For  the case of motion of an infinite pipe along its axis, ar is ing at the t ime t = 0 with the constant 
veloci ty U, we can obtain the following express ion for the velocity of the fluid par t ic les  located inside 
the pipe: 

xl Zo(~o~ ~/~) o u - ~ f f  I - - 2  . . . . . .  x p  ~t  

Here a -- pipe rad ius,  r = va r iab le  radius,  J0 = Bessel  funct ion of the f i r s t  kind of zero o rder ,  a0k = 
roots of the equation J0(~) = O, v = k inemat ic  v iscos i ty ,  t = t ime.  

The specific (per unit pipe length) power dissipated in the fluid in the pipe motion is 

and the speeifie power of the external forces  expended on pipe motion is 

The ra t io  of  the speci f ic  energy dissipated in the f lu id  by t ime  t f r om in i t ia t ion  of the mot ion 
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to the specific work of the external  forces  during this same t ime 
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A=4n~"-pU ~ _~ exp _ vt -~ t ,~=t a~ - -~ as t --* co 

Thus, half the work expended is dissipated into heat, half is expended on entraining the fluid into 
motion. 

2. For  the case of rotation of an infinitely long cyl inder  of radius a about its axis, set into rotation 
at the t ime t = 0 with the constant  angular veloci ty w, we can obtain the following expression for the c i r -  
cumferent ia l  veloci ty of the fluid [1] 
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Here Ji  is the Bessel  function of the f i rs t  kind of f i r s t  o rde r ,  ~lk a re  the roots  of the equation Jl(c~) = 0. 

The rate  of energy dissipation per  unit fluid volume is 

au u i / u ~u \ 
E=4~2--4F ~ T - ~ '  ~ = - ~ - [ - ' ~ - b ~ ' )  (} = vorticity) 

The power dissipated in the fluid (per unit cyl inder  length) is 

: ( %~, t /  D=4~o~ ~a ~'~ exp - -2-~-  / 

k = l  

The power supplied is 

o ( ) 
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And in this case  the ratio of the specific energy dissipated 
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to the speoifie work of the external forces 
co 
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On the bas is  of the Helmholtz theorem this ratio for the cylinder of finite length, and also for the 
ellipsoid, sphere,  and so on, will exceed 1 / 2 ,  and the g rea t e r  the boundary velocity the g rea t e r  is the dis-  
sipated energy fraction,  other  conditions being the same.  

3. The charac te r i s t i c  feature of the problem is the condition that the fluid be bounded by moving 
s urfac es. 

If a solid sur face  pe r fo rms  tangential  motion in an infinite fluid, then the dissipated energy fract ion 
inc reases .  Thus, for example, for the case  of tangential motion in an infinitely deep liquid of an infinite 
plane which begins motion with the constant velocity U at the t ime t = 0 we can obtain the following ex- 
p ress ion  for the fluid par t ic le  velocity [1]: 

2 exp (-- ~t) sin ] f~  
u = U  i--- E- o 

where y is the ordinate,  measured  f rom the moving plane. 

The power dissipated per  unit a rea  of the moving plane is 

D ~--- pUs ~ /~ /2n t  

the specific power of the external forces  expended on motion of the plane is 

N ~_ pU ~ ~ t  
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The ratio of the specific (per unit area) energy dissipated in the fluid 

A~= p~r~ ~2~/.~ 

to the work expended 

A = 2pU 2 ] / ~  

equals in this case  1/~Z2 and is independent of t ime. 

Thus, in the case  of tangential motion of a plane in an infinite fluid Iess than 30% of the work of the 
external  forces  is expended on entraining the fluid into motion and more  than 70% of the work expended is 
dis s ipated. 

At the same t ime, for the case  of paral lel  motion of two planes at the distance h f rom one another 
and beginning motion at the t ime t = 0 in the same direct ion with the constant velocity U the ratio of the 
energy dissipated to the work expended equals 1 / 2 ,  since in this case  the fluid is enclosed between the 
moving sur faces .  

In fact, it can be shown that the fluid veloci ty in this case is defined by the expression 

co 

and the external  force  power expended on motion of the plates is 

N=8,P'U~ ~ exp[ (2k+h21)2n~ vt], 
h k=l 

and the power dissipated in the fluid is 
~3 

D=8 ~U~ Z exp[--2 (2k~-l)292 l h  'z vt 
h k=l 

The ratio of the specific energy dissipated in the fluid during the t ime t 

oo 

o pi 2r 2k§ ]} 
to the work expended during this same time 

equals 1 / 2  as t -~ oo. 

oo 

We note that the specific (per unit sur face  area) work of the external  forces  expended on tangential 
displacement  of the sur faces  bounding the fluid is finite as t -* 0% while the specific work of the tangential 
displacement  of any sur faces  in an infinite fluid increases  without limit as t - -oo .  

For  tangential  motions of solid sur faces ,  accompanied by energy dissipation in the s teady-s ta te  r e -  
g imes ,  for example for the cases  of rotat ion of a cyl inder  o r  a plane in an infinite fluid, motion of a plane 
paral le l  to some s ta t ionary plane, motion of a pipe in a pipe, and so on, the relat ive fract ion of energy dis-  
sipated during the t rans ient  process  t ime (i.e., during the period of motion acceleration) equals unity. In 
this case  the t rans ient  p rocess  is accompanied by energy dissipation which exceeds infinitely the energy 
expended on entraining the fluid into motion. 

In conclusion we note that the solutions of such problems as the Slezkin problem [i] on submergence 
of a flat plate into a viscous fluid, the Targ problem [2] on immersion of a pipe, solutions of various prob- 
lems onboundary layer development, and so on, obtained on the basis of the solution of the approximate 
equations of motion, yield energetically impossible velocity fields in the fluid, since the energy dissipation 
in such fields is infinite. The reason for this is the unsatisfactory form of the velocity profile at the lead- 
ing edge of the solid walls, obtained in adopting the boundary conditions of unperturbed fluid flow at the 
leading edge of the wall. In this case the surface of maximal velocity gradient is convex in relation to the 
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su r f ace  being i m m e r s e d ,  being at the s a m e  t ime  infinite at the leading edge. Fo r  example ,  in the case  of 
i m m e r s i o n  of a pipe the power d iss ipa ted  in the fluid volume inside the i m m e r s e d  par t  of the pipe of length 
h is 

al though the power  expended on i m m e r s i o n  of the tube is finite 

1. 
2. 
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